headerphoto
lunes, 9 de noviembre de 2009

Electricidad Básica

TEMA: Electricidad Básica
LOGRO: El estudiante conoce los conceptos básicos de electricidad y realiza experimentos
CONTENIDOS:
  • Objetivos
  • Contenido Temático
  • Actividades Curriculares
  • Recursos
  • Evaluación
  • Actividades Extracurriculares
  • Observaciones

OBJETIVOS


·           Lograr que el estudiante conozca y manipule la electricidad
·           Lograr un aprendizaje significativo sobre Tecnología.

CONTENIDO TEMÁTICO.

ELECTRICIDAD BÁSICA

La electricidad (del griego elektron, cuyo significado es ámbar) es un fenómeno físico cuyo origen son las cargas eléctricas y cuya energía se manifiesta en fenómenos mecánicos, térmicos, luminosos y químicos, entre otros. Se puede observar de forma natural en fenómenos atmosféricos, por ejemplo los rayos, que son descargas eléctricas producidas por la transferencia de energía entre la ionosfera y la superficie terrestre (proceso complejo del que los rayos solo forman una parte). Otros mecanismos eléctricos naturales los podemos encontrar en procesos biológicos, como el funcionamiento del sistema nervioso. Es la base del funcionamiento de muchas máquinas, desde pequeños electrodomésticos hasta sistemas de gran potencia como los trenes de alta velocidad, y asimismo de todos los dispositivos electrónicos. Además es esencial para la producción de sustancias químicas como el aluminio y el cloro.

También se denomina electricidad a la rama de la física que estudia las leyes que rigen el fenómeno y a la rama de la tecnología que la usa en aplicaciones prácticas. Desde que, en 1831, Faraday descubriera la forma de producir corrientes eléctricas por inducción —fenómeno que permite transformar energía mecánica en energía eléctrica— se ha convertido en una de las formas de energía más importantes para el desarrollo tecnológico debido a su facilidad de generación y distribución y a su gran número de aplicaciones.

La electricidad es originada por las cargas eléctricas, en reposo o en movimiento, y las interacciones entre ellas. Cuando varias cargas eléctricas están en reposo relativo se ejercen entre ellas fuerzas electrostáticas. Cuando las cargas eléctricas están en movimiento relativo se ejercen también fuerzas magnéticas. Se conocen dos tipos de cargas eléctricas: positivas y negativas. Los átomos que conforman la materia contienen partículas subatómicas positivas (protones), negativas (electrones) y neutras (neutrones). También hay partículas elementales cargadas que en condiciones normales no son estables, por lo que se manifiestan sólo en determinados procesos como los rayos cósmicos y las desintegraciones radiactivas.

La electricidad y el magnetismo son dos aspectos diferentes de un mismo fenómeno físico, denominado electromagnetismo, descrito matemáticamente por las ecuaciones de Maxwell. El movimiento de una carga eléctrica produce un campo magnético, la variación de un campo magnético produce un campo eléctrico y el movimiento acelerado de cargas eléctricas genera ondas electromagnéticas (como en las descargas de rayos que pueden escucharse en los receptores de radio AM).

Historia de la Electricidad

La historia de la electricidad como rama de la física comenzó con observaciones aisladas y simples especulaciones o intuiciones médicas, como el uso de peces eléctricos en enfermedades como la gota y el dolor de cabeza, u objetos arqueológicos de interpretación discutible (la batería de Bagdad). Tales de Mileto fue el primero en observar los fenómenos eléctricos cuando, al frotar una barra de ámbar con un paño, notó que la barra podía atraer objetos livianos.

Mientras la electricidad era todavía considerada poco más que un espectáculo de salón, las primeras aproximaciones científicas al fenómeno fueron hechas en los siglos XVII y XVIII por investigadores sistemáticos como Gilbert, von Guericke, Henry Cavendish, Du Fay, van Musschenbroek y Watson. Estas observaciones empiezan a dar sus frutos con Galvani, Volta, Coulomb y Franklin, y, ya a comienzos del siglo XIX, con Ampère, Faraday y Ohm. No obstante, el desarrollo de una teoría que unificara la electricidad con el magnetismo como dos manifestaciones de un mismo fenómeno no se alcanzó hasta la formulación de las ecuaciones de Maxwell (1861-1865).

Los desarrollos tecnológicos que produjeron la primera revolución industrial no hicieron uso de la electricidad. Su primera aplicación práctica generalizada fue el telégrafo eléctrico de Samuel Morse (1833), que revolucionó las telecomunicaciones. La generación masiva de electricidad comenzó cuando, a fines del siglo XIX, se extendió la iluminación eléctrica de las calles y las casas. La creciente sucesión de aplicaciones que esta disponibilidad produjo hizo de la electricidad una de las principales fuerzas motrices de la segunda revolución industrial. Más que de grandes teóricos, como Lord Kelvin, fue éste el momento de grandes inventores como Gramme, Westinghouse, von Siemens y Alexander Graham Bell. Entre ellos destacaron Nikola Tesla y Thomas Alva Edison, cuya revolucionaria manera de entender la relación entre investigación y mercado capitalista convirtió la innovación tecnológica en una actividad industrial. Tesla, un inventor serbio-americano, descubrió el principio del campo magnético rotatorio en 1882, que es la base de la maquinaria de corriente alterna. También inventó el sistema de motores y generadores de corriente alterna polifásica que da energía a la sociedad moderna.

El alumbrado artificial modificó la duración y distribución horaria de las actividades individuales y sociales, de los procesos industriales, del transporte y de las telecomunicaciones. Lenin definió el socialismo como la suma de la electrificación y el poder de los soviets. La sociedad de consumo que se creó en los países capitalistas dependió (y depende) en gran medida del uso doméstico de la electricidad.

El desarrollo de la mecánica cuántica durante la primera mitad del siglo XX sentó las bases para la comprensión del comportamiento de los electrones en los diferentes materiales. Estos saberes, combinados con las tecnologías desarrolladas para las transmisiones de radio, permitieron el desarrollo de la electrónica, que alcanzaría su auge con la invención del transistor. El perfeccionamiento, la miniaturización, el aumento de velocidad y la disminución de costo de las computadoras durante la segunda mitad del siglo XX fue posible gracias al buen conocimiento de las propiedades eléctricas de los materiales semiconductores. Esto fue esencial para la conformación de la sociedad de la información de la tercera revolución industrial, comparable en importancia con la generalización del uso de los automóviles.
Los problemas de almacenamiento de electricidad, su transporte a largas distancias y la autonomía de los aparatos móviles alimentados por electricidad todavía no han sido resueltos de forma eficiente. Asimismo, la multiplicación de todo tipo de aplicaciones prácticas de la electricidad ha sido —junto con la proliferación de los motores alimentados con destilados del petróleo— uno de los factores de la crisis energética de comienzos del siglo XXI. Esto ha planteado la necesidad de nuevas fuentes de energía, especialmente las renovables.






Corriente continua, CC, en inglés, DC

Corriente continua

Los electrones se mueven en un mismo sentido, del polo negativo al polo positivo que los atrae. La energía necesaria para que se muevan es generada por pilas y baterías (transformación de energía química en eléctrica) o por células fotovoltaicas (energía radiante -luz- en eléctrica). Los voltajes son pequeños: 1,5, 4,5, 9 V... Se utilizan en linternas, CD portátiles, móviles, circuitos electrónicos...

Corriente alterna, CA, en inglés, AC

Corriente alterna

Los electrones cambian de sentido («alternan») una y otra vez. La corriente alterna se genera mediante un alternador (transformación de energía mecánica en eléctrica). Es la que más se emplea porque se obtienen voltajes mucho más altos y, por consiguiente, grandes cantidades de energía. Es la que usamos en casa para la iluminación, la televisión, la lavadora, etc. (230 V).


Amperaje

El amperaje no es otra cosa que la fuerza o la potencia en una corriente eléctrica circulando entre dos puntos, estos son el negativo y el positivo a través de un conductor o cable eléctrico. La corriente eléctrica circula del negativo hacia el positivo.

La forma de saber que amperaje circula por una corriente eléctrica es conectado en serie un amperémetro, para esto debe de haber una carga entre el negativo y el positivo, por ejemplo, un receptor de radio, una lavadora de ropa, etc.


El amperaje en un circuito eléctrico se ha comparado con un flujo de agua por un conducto, cuanto más caudal de agua, mayor presión, otro factor que influye es el grosor del conducto. si el conducto es reducido el agua contiene más presión pero su caudal será menor. Si por el contrario, el conducto es mayor, la cantidad de agua será, por lo mismo mayor pero a menor presión. Lo mismo sucede con un conductor eléctrico, si su calibre (grueso) es reducido, la corriente encontrará resistencia u oposición a su paso, si el calibre es mayor, fluirá de forma libre con menor resistencia.

Voltaje

El voltaje, tensión, también diferencia de potencial, se le denomina a la fuerza electromotriz (FEM) que ejerce una presión o carga en un circuito eléctrico cerrado sobre los electrones, completando con esto un circuito eléctrico. Esto da como resultado el flujo de corriente eléctrica. Cuanto mayor sea la presión ejercida de la fuerza electromotriz sobre los electrones o cargas eléctricas que circulan por el conductor, en esa medida será el voltaje o tensión que existirá en el circuito.


Frecuencia

La frecuencia es la cantidad de ciclos completos en una corriente eléctrica y se calculan por segundo, por ejemplo, la corriente alterna oscila o cambia con una frecuencia de 50 ó 60 ciclos por segundo.
La unidad para medir estos ciclos es el Hertz (Hz) y debe su nombre al físico alemán Heinrich Rudolf Hertz, quien en 1888 demostró la existencia de las ondas electromagnéticas. Por ejemplo un Hertz o Hertzio es un ciclo por segundo.

Fase

Se dice que la corriente alterna está en fase en un circuito cuando el voltaje (tensión) y corriente (amperaje) pasan de cero a máximo o de máximo a cero simultáneamente, cabe decir, si se trata de un circuito en esencia resistivo.

Ahora bien, dado que existen factores capacitivos e inductivos en la corriente alterna común, el voltaje y corriente no se encuentran en fase; podemos decir entonces que se encuentran fuera de fase.




Pila voltaica


Esquema funcional de una pila eléctrica.

Se denomina ordinariamente pila eléctrica a un dispositivo que genera energía eléctrica mediante un proceso químico transitorio, tras el cual cesa su actividad y han de renovarse sus elementos constituyentes, puesto que sus características resultan alteradas durante su funcionamiento. Se trata por ello de un generador primario. La electricidad producida resulta accesible mediante dos terminales que tiene la pila, llamados polos, electrodos o bornes. Uno de ellos es el polo positivo o ánodo y el otro es el polo negativo o cátodo. En español es habitual llamarla así, mientras que a las pilas recargables o acumuladores se les suele llamar baterías.
La primera pila eléctrica fue dada a conocer al mundo por Volta en 1800, mediante una carta que envió al presidente de la Royal Society londinense, por tanto las pilas datan de los primeros tiempos de la electricidad. Aunque la apariencia de una pila sea simple, la explicación de su funcionamiento dista de serlo y motivó una gran actividad científica en los siglos XIX y XX, así como diversas teorías. La demanda creciente que tiene este producto en el mercado sigue haciendo de él objeto de investigación intensa.

El funcionamiento de una pila se basa en el potencial de contacto entre dos sustancias, mediado por un electrolito. Cuando se necesita una corriente mayor que la que puede suministrar un elemento único, siendo su tensión en cambio la adecuada, se pueden añadir otros elementos en la conexión llamada en paralelo. La capacidad total de una pila se mide en amperios-hora (A•h); es el número máximo de amperios que el elemento puede suministrar en una hora. Es un valor que no suele conocerse, ya que no es muy claro dado que depende de la intensidad solicitada y la temperatura.

Un importante avance en la calidad de las pilas ha sido la pila denominada seca, al que pertenecen prácticamente todas las utilizadas hoy día (2008). Las pilas eléctricas, baterías y acumuladores se presentan en unas cuantas formas normalizadas en función de su forma, tensión y capacidad.
Los metales y productos químicos constituyentes de las pilas pueden resultar perjudiciales para el medio ambiente. Una vez que la envoltura metálica que recubre las pilas se daña, las sustancias químicas que contienen se ven liberadas al medio ambiente causando contaminación. Con mayor o menor grado, las sustancias son absorbidas por la tierra pudiéndose filtrar hacia los mantos acuíferos y de éstos pueden pasar directamente a los seres vivos, entrando con esto en la cadena alimenticia. Es muy importante no tirarlas a la basura (en algunos países está prohibido), sino llevarlas a centros de reciclado. En algunos países, la mayoría de los proveedores y tiendas especializadas también se hacen cargo de las pilas gastadas. Las pilas son residuos peligrosos por lo que, desde el momento en que se empiezan a reunir, deben ser manejadas por personal capacitado que siga las precauciones adecuadas empleando todos los procedimientos técnicos y legales para el manejo de dicho residuos.
Las pilas desechables suelen utilizarse en los aparatos eléctricos portátiles, como por ejemplo juguetes, linternas, relojes, teléfonos móviles, marcapasos, audífonos, calculadoras, ordenadores personales portátiles, reproductores de música, radio transistores, mando a distancia, etc. En todas estas aplicaciones se utilizan también cada vez más baterías recargables.

Pilas de combustible



Pila de hidrógeno. La celda en sí es la estructura cúbica del centro de la imagen.

Una celda, célula o pila de combustible es un dispositivo electroquímico de generación de electricidad similar a una batería, que se diferencia de esta en estar diseñada para permitir el reabastecimiento continuo de los reactivos consumidos. Esto permite producir electricidad a partir de una fuente externa de combustible y de oxígeno, en contraposición a la capacidad limitada de almacenamiento de energía de una batería. Además, la composición química de los electrodos de una batería cambia según el estado de carga, mientras que en una celda de combustible los electrodos funcionan por la acción de catalizadores, por lo que son mucho más estables.
En las celdas de hidrógeno los reactivos usados son hidrógeno en el ánodo y oxígeno en el cátodo. Se puede obtener un suministro continuo de hidrógeno a partir de la electrólisis del agua, lo que requiere una fuente primaria de generación de electricidad, o a partir de reacciones catalíticas que desprenden hidrógeno a partir de hidrocarburos. El hidrógeno puede almacenarse, lo que permitiría el uso de fuentes discontinuas de energía como la solar y la eólica. Sin embargo, el hidrógeno gaseoso (H2) es altamente inflamable y explosivo, por lo que se están desarrollando métodos de almacenamiento en matrices porosas de diversos materiales.

Generador termoeléctrico de radioisótopos
Un generador termoeléctrico de radioisótopos es un generador eléctrico simple que obtiene su energía de la liberada por la desintegración radiactiva de determinados elementos. En este dispositivo, el calor liberado por la desintegración de un material radiactivo se convierte en electricidad directamente gracias al uso de una serie de termopares, que convierten el calor en electricidad gracias al efecto Seebeck en la llamada unidad de calor de radioisótopos (o RHU en inglés). Los RTG se pueden considerar un tipo de batería y se han usado en satélites, sondas espaciales no tripuladas e instalaciones remotas que no disponen de otro tipo de fuente eléctrica o de calor. Los RTG son los dispositivos más adecuados en situaciones donde no haya presencia humana y se necesiten potencias de varios centenares de vatios durante largos períodos de tiempo, situaciones en las que los generadores convencionales como las pilas de combustible o las baterías no son viables económicamente y donde la falta de luz impide usar células fotovoltaicas.

Símbolos eléctricos
Al igual que en el trabajo de electrónica, en electricidad necesitamos el diagrama de un circuito, en esta página podrás encontrar los símbolos usados en electricidad para el diseño de estos, algunos te serán familiares, porque los has visto en los circuitos electrónicos. Otros son un tanto diferentes de los comunes que se usan en electrónica.





Suministro Eléctrico

Se denomina suministro eléctrico al conjunto de etapas que son necesarias para que la energía eléctrica llegue al consumidor final. Como la energía eléctrica es difícil de almacenar, este sistema tiene la particularidad de generar y distribuir la energía conforme ésta es consumida. Por otra parte, debido a la importancia de la energía eléctrica, el suministro es vital para el desarrollo de los países y de interés para los gobiernos nacionales, por lo que estos cuentan con instituciones especializadas en el seguimiento de las tres etapas fundamentales: generación, transmisión y distribución.






SITUACIÓN DE APRENDIZAJE
Pedro vive en una casa donde falla mucho la corriente eléctrica, el quiere arreglarla en persona, pero no tiene los conocimientos suficientes para hacerla.


PREGUNTA GENERADORA
¿Cuáles conceptos básicos necesita Pedro conocer?
¿Cómo puede capacitarse Pedro sin hacer un curso en el SENA?

ACTIVIDADES CURRICULARES:
·           ACTIVIDAD 1:
Tarea 1:
                        En grupos de 4 personas realice el siguiente taller:

Realice el siguiente experimento:

Una pila es un dispositivo que permite obtener una corriente eléctrica a partir de una reacción química. En esta experiencia te vamos a enseñar a construir una pila casera que, además, funciona.

Material que vas a necesitar:
·         Un vaso
·         Una botella de vinagre
·         Un trozo de tubería de cobre (de las que se usan para las conducciones de agua)
·         Un sacapuntas o afilalápices metálico
·         Cables eléctricos
·         Un aparato que vamos a hacer funcionar con la pila. Se obtienen buenos resultados con los dispositivos musicales que llevan algunas tarjetas de felicitación. También puede servir un reloj despertador de los que funcionan con pilas.

¿Cómo construir la pila?
Toda pila consta de dos electrodos (generalmente dos metales) y un electrolito (una sustancia que conduce la corriente eléctrica). En este caso vamos a utilizar como electrodos los metales cobre y magnesio.
En concreto, vamos a utilizar una tubería de cobre y un sacapuntas, cuyo cuerpo metálico contiene magnesio. Como electrolito vamos a utilizar vinagre.

Construir la pila es muy sencillo sólo tienes que introducir los electrodos en el interior del vinagre contenido en un vaso y unir un cable a cada uno de ellos (tal como muestra la figura).








Debes tener cuidado de que la tubería de cobre se encuentre bien limpia. Para limpiarla puedes frotarla con un papel de lija.

¿Cómo hacer que funcione?
Para hacerla funcionar sólo tienes que unir los dos cables que salen de los electrodos a un aparato que funcione con pilas. El problema es que esta pila proporciona una intensidad de corriente muy baja, debido a que tiene una alta resistencia interna, por ello no siempre vas a conseguir que funcione. Tienes que elegir el dispositivo adecuado: un aparato que requiera una potencia muy pequeña. Por ejemplo:
·         Un dispositivo de los que tocan una canción en los juguetes para bebés o de los que llevan incorporado algunas tarjetas de felicitación (musicales)
·         Un reloj a pilas (sirve un despertador)

Sólo tienes que unir los cables de la pila a los dos polos del porta pilas del aparato. Pero no olvides que hay que buscar cuál es la polaridad correcta, sino puede que el aparato no funcione.

NOTA: Mientras no se utilice, hay que tener el sacapuntas fuera del vinagre para evitar que reaccionen. Observarás que cuando entran en contacto, el magnesio del sacapuntas reacciona con el ácido del vinagre y se desprenden numerosas burbujas. Se trata de gas hidrógeno.

Sigue experimentando
Puedes intentar hacer funcionar otros aparatos con esta pila. Probablemente lo consigas con un pequeño motor eléctrico.

También puedes intentar construir otras pilas utilizando otros metales y otros electrolitos. El problema que vas a encontrar es que la intensidad que obtienes es muy baja y te va a resultar difícil hacer funcionar los aparatos. Pero, si tienes un polímetro (aparato para medir intensidades y diferencias de potencial eléctricas) a mano podrás detectar la corriente obtenida.

Tarea 2:
Realice un resumen en el cuaderno del tema visto
                        Tarea 2:
Fabrique otra solución para el problema

HERRAMIENTAS DE ANDAMIAJE

EVALUACIÓN:
·           Autoevaluación: El estudiante realiza una lista de los conocimientos adquiridos durante el proceso y cuales son los puntos en los que tiene déficit.
·           Heteroevaluación: El docente realiza una inspección de los avances que van teniendo los estudiantes para crear estrategias para mejorar.

RECURSOS:
Físicos: Aula, Computadores, Internet, Tablero, Cuaderno.
            Material Teórico: Tecnología, Videos
            Humanos: Docente y Estudiantes

BIBLIOGRAFÍA Y CIBERGRAFÍA
           
ACTIVIDADES EXTRACURRICULARES:
·            
.
OBSERVACIONES:

0 comentarios:

Publicar un comentario